

ProSoft®

Импортозамещение в автоматизации зданий и сооружений

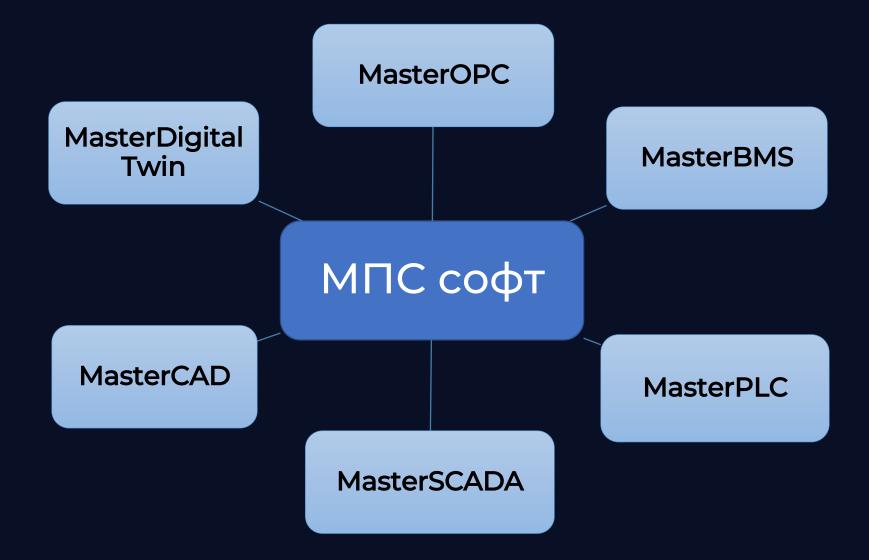
35 ЛЕТ

НА РЫНКЕ

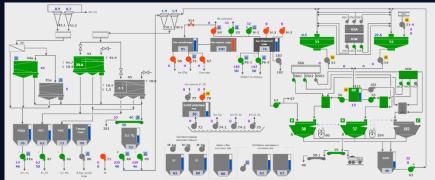
100 000+ инсталляций

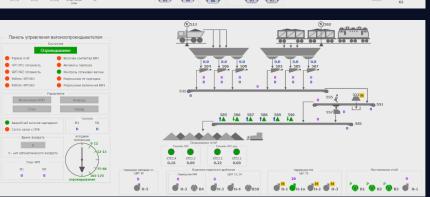
30+ отраслей

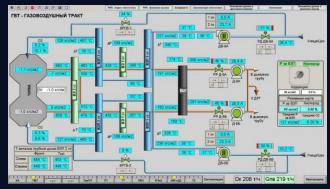
КОМАНДА МПС СОФТ

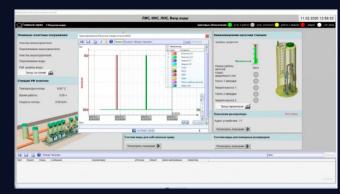

- Разработчики ПО
- Аналитики
- Тестировщики
- Системные архитекторы
- Инженеры технической поддержки
- Инженеры из различных отраслей промышленности

В общей сложности ~ 100 специалистов


ПРОДУКТЫ МПС СОФТ






MASTERSCADA – ПЛАТФОРМА ABTOMATИЗАЦИИ И ДИСПЕЧЕРИЗАЦИИ



MasterBMS

Конфигуратор систем диспетчеризации зданий и сооружений

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Общеобменная вентиляция

Электроснабжение (ТП, ABP, ДГУ, PDU)

Освещение (внутреннее, архитектурное)

Водоснабжение, водоотведение

Теплоснабжение (ИТП)

Учет ресурсов

Бесперебойное питание

Контроль параметров среды

Кондиционирование и холодоснабжение

IT оборудование

Интеграция с BIM

АУГПТ

СКУД

MasterCAD

Инструмент для автоматизации проектирования

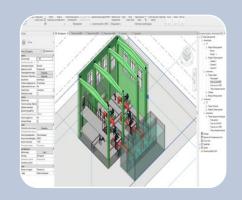
Конфигурирование состава установки для общеобменной вентиляции и ИТП Выбор основного оборудования шкафа автоматики вентиляции и построение Спецификации

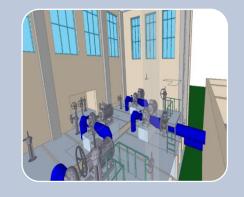
Автоматизированное построение ФСА и списка сигналов

Автоматизированное построение чертежа внешнего вида шкафа автоматики

Расчеты оборудования шкафа в зависимости от мощности управляемых устройств Конфигурирование шины RS485

Master Digital Twin


ВІМ и 3D ≠ цифровой двойник


- ПОДДЕРЖИВАЕМЫЙ ФОРМАТ .ifc
- СОПОСТАВЛЕНИЕ ОБЪЕКТОВМОДЕЛИ ОБЪЕКТАМ СИСТЕМЫ МОНИТОРИНГА

ОТОБРАЖЕНИЕ СОСТОЯНИЯ ОБЪЕКТА НА 3D МОДЕЛИ С

- ПОМОЩЬЮКРОСПЛАТФОРМЕННОГОПРИЛОЖЕНИЯ
- ИНТЕРАКТИВНОСТЬ МОДЕЛИБЕЗ ЕЕ ИСТОЧНИКА (ПРОЕКТА Revit)

3D объект

√ 3D геометрия, текстура

BIM модель

- √ 3D геометрия, текстура
- ✓ Размещение в пространстве
- ✓ Технологический паспорт
- ✓ Цена и стоимость

Master Digital Twin

- ✓ 3D геометрия, текстура
- ✓ Размещение в пространстве
- ✓ Технологический паспорт
- ✓ Цена и стоимость
- √ Отражение реального состояния объектов и управление ими

НАМ ДОВЕРЯЮТ

АСУ ТП АГНКС

АСУ Нефтебазой

АСУЭ

АСУ ТП УПСВ месторождения

АСУ технологических защит энергоблоков АЭС

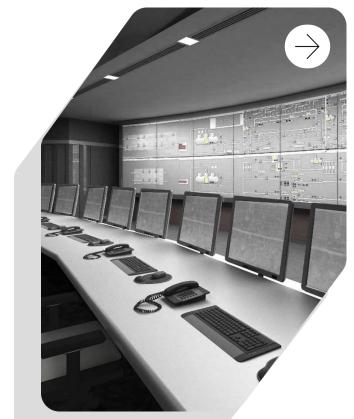
Диспетчерская электромеханической и энергетической служб

АСУ ИТП и ЦТП

Диспетчеризация объектов

Телемеханика объектов газового хозяйства

Мониторинг инженерной <u>инфраструктуры</u>



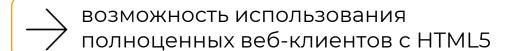
СИКНС

Уход западных вендоров с российского рынка

Рынок автоматизации в Российской Федерации претерпел колоссальные изменения: весной 2022 года с него ушли ведущие западные поставщики оборудования и программных платформ. Интеграторы и заказчики в лице российских предприятий оказались в ситуации безумной турбулентности – пришлось срочно создавать новые антикризисные стратегии по импортонезависимости технологий и решений. Но любой кризис – это не только потери, но и приобретения. Одним из таких приобретений стало осознание, что российские решения прикладного уровня – SCADA-системы – уже давно и надежно работают, могут заместить западные аналоги, и настал их черед выйти на новый уровень в умелых руках российских интеграторов.

MasterSCADA 4D

MasterSCADA 4D – это продукт нового поколения SCADA-систем. На базе ПО MasterSCADA на текущий момент уже реализованы десятки тысяч проектов более чем в 38 отраслях.


Благодаря бесплатной среде разработки заказчики и интеграторы могут начать тестирование этого продукта в любое удобное для себя время.

Почему именно MasterSCADA 4D

Выбор SCADA-системы проводился из ПО отечественного сегмента с расширенным функционалом и возможностью создания конкурентоспособного интерфейса на уровне современных веб-приложений:

интегрированный редактор С# и открытое АРІ

поддержка 64-разрядных систем

встроенные средства программирования ПЛК

кроссплатформенное ядро (поддержка различных ОС, включая AstraLinux)

поддержка большинства современных протоколов

Предшественник ЕСМО

01

До начала разработки ЕСМО (Единой системы мониторинга) трех своих офисов УЦСБ использовал зарубежную SCADA-систему PcVue, которая осуществляла мониторинг только одного его офиса.

02

Из-за функционального устаревания текущей SCADA было принято решение о переходе на новую систему.

03

Стояла непростая задача, а именно: разработать новую систему мониторинга без нарушения функционирования старой.

ЕСМО трех офисов

Общая информация

- 2020 год
- Пилотный проект ECMO

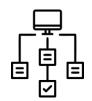
Характеристика объекта

- 3 офиса
- Общая площадь>6000 м2
- Расположены в разных точках города

Выбранное решение

MasterSCADA 4D

Задачи, решаемые с помощью ЕСМО


Снижение затрат на электроэнергию за счёт оптимальных настроек работы систем вентиляции, автоматического выключения вентиляции и освещения при постановке офиса на сигнализацию

Исключение ситуаций, связанных с бесконтрольной работой оборудования и его незамеченным выходом из строя

Оптимальная работа инженерной инфраструктуры благодаря автоматизации и своевременному оповещению (SMS, email, telegram) служб эксплуатации о возникновении нештатных ситуаций

Автоматическое формирование и ведение отчётов по учёту ресурсов во всех офисах

Протоколы, использованные в ЕСМО

Modbus TCP

Modbus RTU

SNMP

MQTT

Пульсар

(счетчик воды)

Энергомера

(счетчик электроэнергии) **OPC UA**

(для интеграции c LonWorks и Милур)

Инженерные системы интегрированные в ECMO

Охранная сигнализация «Болид»

Интегрированная система охранной сигнализации

Удаленный контроль поэтажной постановки офисов на охрану

Оперативные оповещения о некорректности снятия с охраны или взлома офисов

Пожарная сигнализация «Болид»

Интегрированная система пожарной сигнализации

Оперативные оповещения о неисправности или срабатывании сигнализации

Кондицио-

нирование

Безопасность

1 этаж | Снято с охраны

2 этаж | Снято с охраны

3 этаж | Снято с охраны

Освещение Вентиляция

1 этаж

2 этаж

УЦСБ

Потребление электроэнергии За январь

Мгновенное / Пиковое / Предельное

54.9 кВт / 102.8 кВт /125.0 кВт

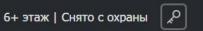
Шейнкмана, 123 →

Безопасность

Освещение Вентиляция

a

1


Кондиционирование

4 этаж | Снято с охраны

7 этаж | Снято с охраны

3 этаж | Снято с охраны

6 этаж | Снято с охраны

Ϋ́

2

Ткачей, 23 →

Безопасность

Освещение

Переговорная

Потребление электроэнергии

За январь 1536.5 кВт ч

Мгновенное / Пиковое / Предельное

13.6 кВт / 26.0 кВт / 118.0 кВт

5231.6 кВт ч

За январь

7926.8 кВт ' ч

65.1 кВт / 87.4 кВт / 104.0 кВт

Потребление электроэнергии

Мгновенное / Пиковое / Предельное

Инженерные системы интегрированные в **ECMO**

Система электроснабжения

В ЕСМО отображаются данные:

- Текущая нагрузка
- Распределение электропитания по этажным щитам
- Контроль вводных автоматов

Контроль качества электропитания

Многоканальная система учёта параметров электроэнергии SPM20-M с датчиками SPM20-C

Контроллеры и модули ввода-вывода Wiren Board 6

Учет ресурсов

Электроснабжение

Кроссовая

💍 Инженер | Технический персонал

Графики

Настройки

Нагрузка

Помещения

4 этаж

ЩУ-4

6+ этаж

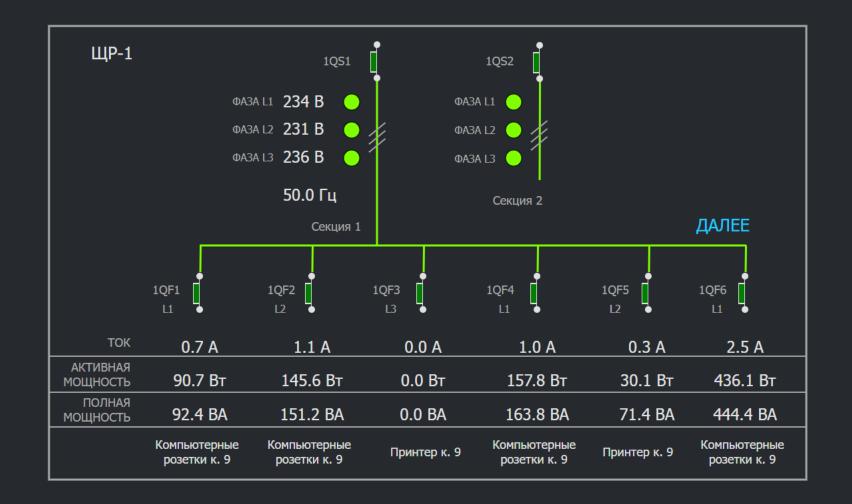
ШВУР

ЩР-1

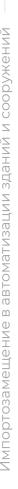
ЩР-2

ЩР-3

ЩР-4


ЩР-5/6

ЩР-7/8/9


7 этаж

ЩС-7

ЩС-7.5

Вентиляция

Инженерные системы интегрированные в **ECMO**

Система бесперебойного электропитания

В ЕСМО отображаются данные:

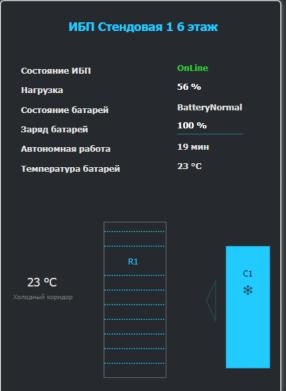
- состояние 12 ИБП в этажных серверных (MGE Galaxy 3500, Smart-UPS RT, Smart-UPS SRT, Delta UPS302R2)
- данные с PDU APC и токовых колец для мониторинга распределения нагрузки

🙎 Инженер | Технический персонал

Помещения Учет ресурсов Электроснабжение Вентиляция <u>Кроссовая</u> Настройки Графики

3 этаж

4 этаж


5 этаж

6 этаж

6+ этах

7 этаж

Инженерные системы интегрированные в ECMO

Система кондиционирования

В ЕСМО отображаются данные:

- Состояние бытовых кондиционеров в кабинетах
- Система кондиционирования серверных помещений (Huawei NetCol5000)

Система микроклимата

В ЕСМО отображаются данные:

- Информация с датчиков температуры
- CO2 в помещениях кабинетов
- Контроль микроклимата в серверных помещениях

ATS 1 стойка 4 ATS 2 стойка 4

Фаза С

Автономная работа 75 мин

Помещения

17.0 %

Учет ресурсов

Электроснабжение

Вентиляция

Серверная

ИБП

Настройки


Счетчик ОВЕН

Normal mode

Заряд батарей

Графики

Кондиционер 1 Кондиционер 2 Модель NetCol5000-A025H4WE2 Питание Вкл 91 % Работа вентиляторов 63 % Охлаждение Вкл на входе на выходе Температура воздуха 15.1 °C 31.3 °C Влажность воздуха 11 % 27 % 20.0 °C HotAisleAir Уставка температуры

29.5 °C

PUE: 1.38

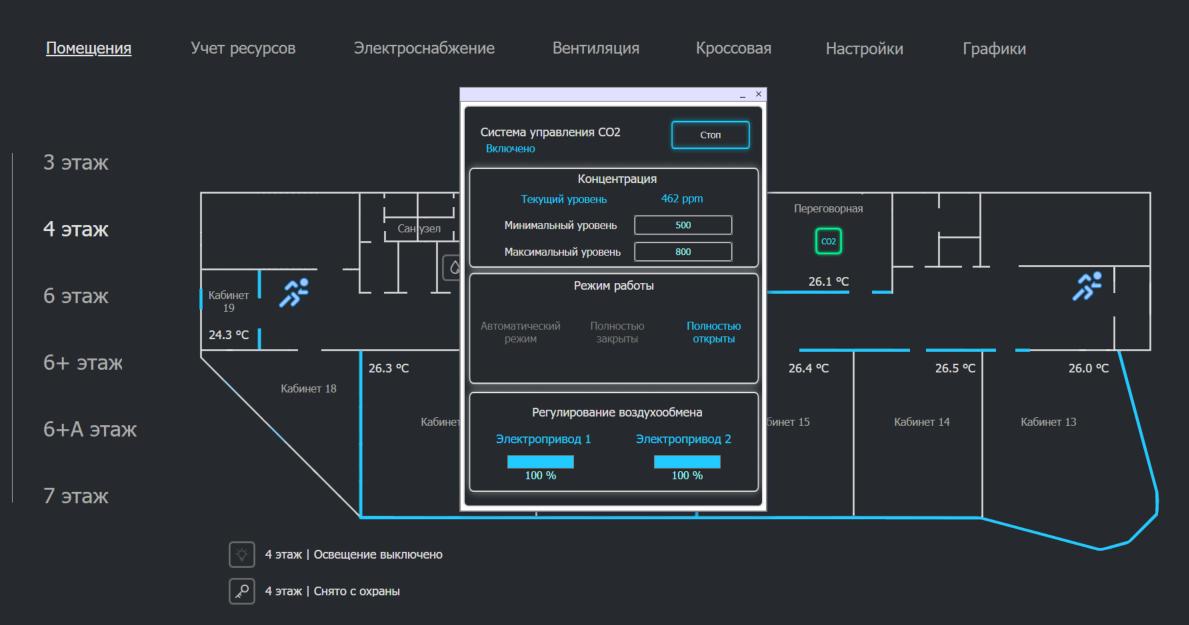
Общая нагрузка: 20.2 κBA

IT нагрузка: 14.7 KBA Напряжение 230 B 230 B 232 B 36.1 A 30.2 A Ток 14.6 A 6.9 **kBA** 8.4 **kBA** 3.4 **kBA** Полная мощность Частота 50 Гц Состояние батарей Float charging 543 B

100 %

ATS стойка 3

Фаза А


Фаза В

Журнал

🙎 Инженер | Технический персонал

Инженерные системы интегрированные в **ECMO**

Система контроля протечек

ЕСМО контролирует наличие протечек в помещениях, оборудованных системой водоснабжения

Система учета электроэнергии и водоснабжения

Журнал

🙎 Инженер | Технический персонал

Помещения <u>Учет ресурсов</u> Электроснабжение Вентиляция Серверная Настройки Графики

Электросчетчик 008840073002187 Текущие показания За январь
Тариф 1 352904.03 кВт · ч
Тариф 2 278776.88 кВт · ч

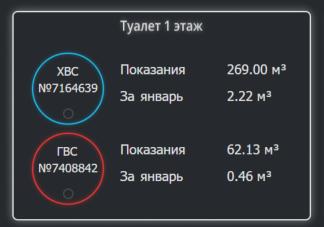
Отчет по текущим показаниям счетчиков формируется автоматически 23 числа каждого

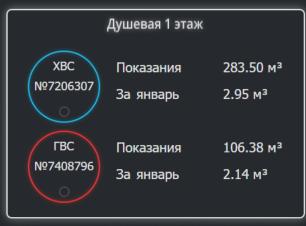
месяца или вручную по кнопке ниже. Адресаты задаются через запятую:

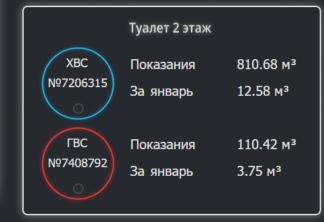
631680.94 кВт · ч

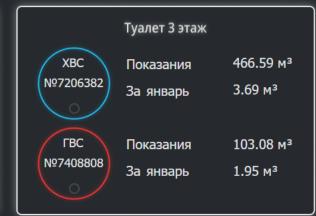
ahusainova@ussc.ru

Суммарный


По текущим показаниям


Потребление э/э по месяцам за год


Потребление воды по месяцам за год Ежедневное потребление э/э за месяц


26944.33 кВт · ч

Ежедневное потребление воды за месяц

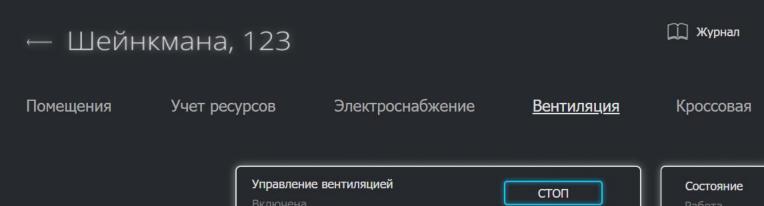
Инженерные системы интегрированные в ЕСМО

Система вентиляции и кондиционирования

В ЕСМО отображаются данные:

- Из одной системы с водно-гликолевым теплообменником
- Из четырех систем с пластинчатым теплообменником и одной системы с ротационным рекуператором

В системах осуществляется контроль фильтров, нагревателей, охладителей и клапанов контроллерами SEGNETICS PIXEL 2511, SEGNETICS SMH2G


Интегрирована вентиляционная установка TURKOV

Возможность удаленного включения и отключения систем по расписанию и в ручном режиме

Дистанционное включение и отключение кондиционеров

ПРИТОК 🔘

22

Сброс

80 %

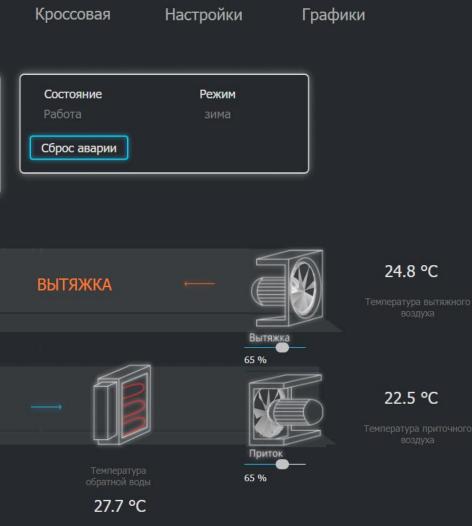
Ручное управление

18.8 °C

Уставка температуры приточного

воздуха

3 этаж


4 этаж

6 этаж

6+ этаж

7 этаж

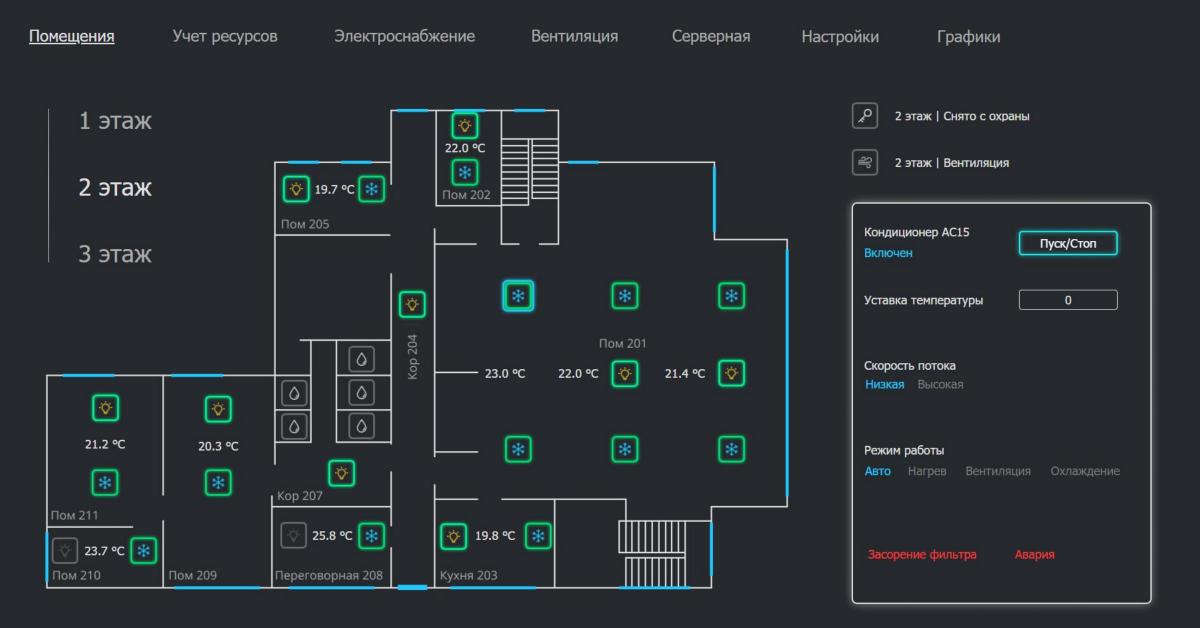
0.1 °C

🙎 Инженер | Технический персонал

[]→ Выйти

Инженерные системы интегрированные в ECMO

Система управления освещением

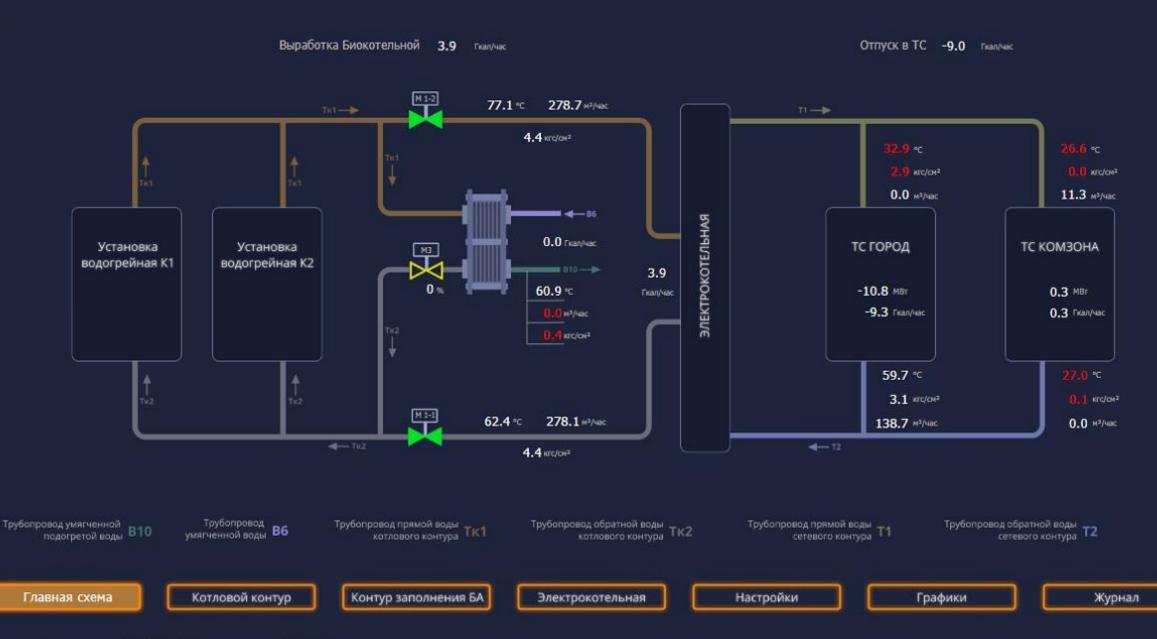

- Для оптимального расхода электроэнергии освещение рабочих мест подключено к ECMO
- Благодаря интеграции с ОПС освещение отключается при постановке офиса на охрану и включается при снятии
- Предусмотрен и ручной дистанционный режим управления освещением

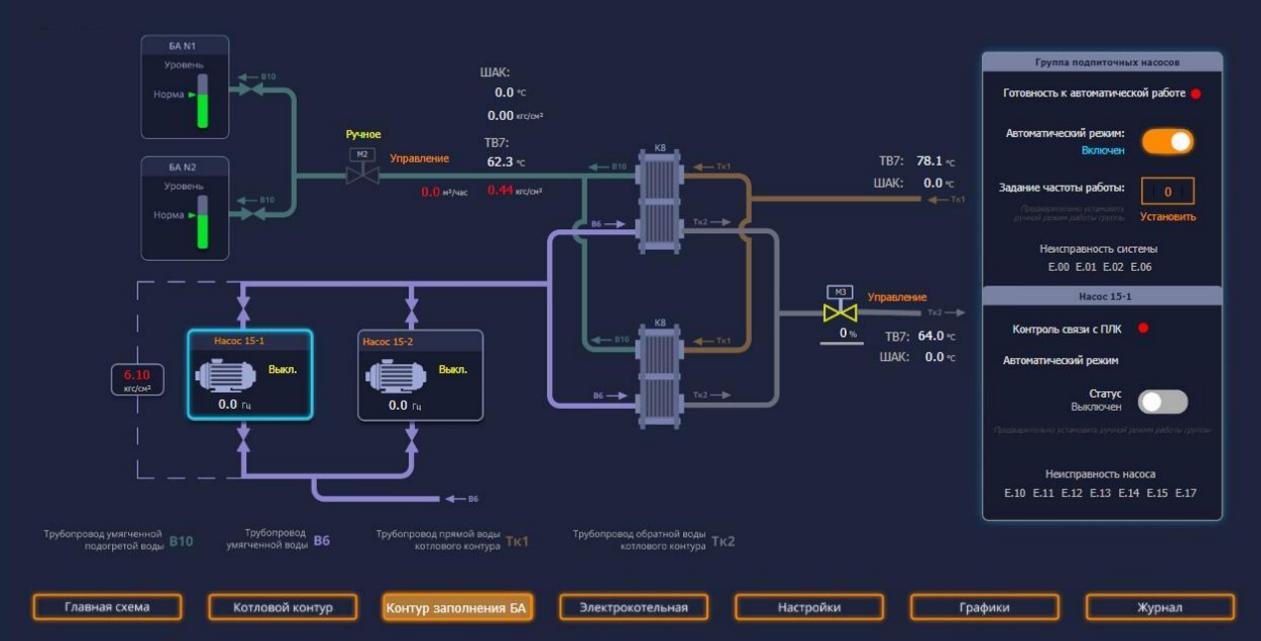
📖 Журнал

💍 Инженер | Технический персонал

АСМУ котельной на биотопливе

Общая информация


- 2021 год
- Мониторинг котельной, работающей на биотопливе


Характеристика объекта

- Электрокотельная с котлами на биотопливе
- Выработка тепловой энергии около 160000 Гкал в год
- Использование вторичных продуктов лесопиления в качестве топлива

Выбранное решение

• MasterSCADA 4D

txt		« » →	События Действия пользователей			
	Дата Время ₹	Тип⊽	Система ⊽	Сообщение ₹	Значение ⊽	Приоритет ⊽
	13.08.2021 18:09:00		Электрокотельная	Город. Расход ТС в трубопроводе подпитки. Выход за аварийные границы		
	13.08.2021 18:08:38	alarm	Электрокотельная	Город Разница расхода между трубопроводами. Выход за аварийные границы	64.1034	701
i	3.08.2021 17:41:37	info	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы. Сигнал	34.8427	401
1	13.08.2021 17:41:24	alarm	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы	35.012	701
1	13.08.2021 17:34:25	info	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы. Сигнал	34.5999	401
1	13.08.2021 17:33:05	warning	Котловой контур	ШАК. ПЛК 150 Овен. Потеря связи	0	601
1	13.08.2021 17:32:45		Электрокотельная	Город Разница расхода между трубопроводами. Выход за аварийные границы	35.788	
1	3.08.2021 17:30:53	info	Котловой контур	ШАК. ПЛК 150 Овен. Связь восстановлена	0	601
1	13.08.2021 17:30:50	warning	Котловой контур	ШАК. ПЛК 150 Овен. Потеря связи	0	601
1	3.08.2021 17:29:15	info	Котловой контур	ШАК. ПЛК 150 Овен. Связь восстановлена	0	601
i	13.08.2021 17:29:10	warning	Котловой контур	ШАК. ПЛК 150 Овен. Потеря связи	0	601
1	3.08.2021 17:21:35	info	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы. Сигнал	34.8892	401
	13.08.2021 17:19:58	alarm	Электрокотельная	Город Разница расхода между трубопроводами. Выход за аварийные границы	35.1116	
1	3.08.2021 17:18:07	info	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы. Сигнал	34.0219	401
i	13.08.2021 16:57:58		Электрокотельная	Город Разница расхода между трубопроводами. Выход за аварийные границы	35.0127	701
(i	13.08.2021 16:55:39	info	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы. Сигнал	34.627	401
	13.08.2021 16:32:08		Электрокотельная	Город Разница расхода между трубопроводами. Выход за аварийные границы	35.6157	701
1	13.08.2021 16:31:45	info	Электрокотельная	Город. Разница расхода между трубопроводами. Выход за аварийные границы. Сигнал	34.8977	401
1	3.08.2021 16:05:46	info	Котловой контур	КИПиА. Температура теплоносителя Тк1. Выход за аварийные границы. Сигнал снят	30.004714965820312	401
1	3.08.2021 15:49:42	info	Электрокотельная	Город. Расход ТС в трубопроводе подпитки. Выход за аварийные границы. Сигнал снят	98.52	401
1	13.08.2021 15:26:43	alarm	Электрокотельная	Расход холодной ноды. Выход за аварийные границы	65.5	701
	13.08.2021 15:26:17		Электрокотельная	Давление холодной воды. Выход за аварийные границы	1.658	
- 1	3.08.2021 14:16:53	info	Электрокотельная	Город. Давление ТС в обратном трубопроводе. Выход за аварийные границы. Сигнал с	2	401
1	13.08.2021 14:16:40		Электрокотельная	Город. Давление ТС в обратном трубопроводе. Выход за аварийные границы	1.996	701
1	3.08.2021 14:16:33	info	Электрокотельная	Город. Давление ТС в обратном трубопроводе. Выход за аварийные границы. Сигнал с	2	401
1	3.08.2021 13:55:32	info	Электрокотельная	Город. Давление ТС в трубопроводе подпитки. Выход за аварийные границы. Сигнал с	1.518	401
1	13.08.2021 13:53:44	alarm	Электрокотельная	Город. Расход ТС в трубопроводе подпитки. Выход за аварийные границы	100.56	701
1	3.08.2021 13:25:09	info	Электрокотельная	Город. Расход ТС в трубопроводе подпитки. Выход за аварийные границы. Сигнал снят	100	401
	13.08.2021 13:15:40		Электрокотельная	Город. Расход TC в трубопроводе подпитки. Выход за анарийные границы		

Электрокотельная

Главная схема

Котловой контур

Контур заполнения БА

Настройки

Графики

Журнал

автоматизации зданий и сооружений Импортозамещение

Необходим доступ к демостенду? Свяжитесь с нами!

Условия

Оставьте заявку на демо

– для этого отправьте запрос на agpec info@prosoft.ru

Обсудите детали взаимодействия

 наши инженеры согласуют время и настроят доступ к демо-стенду

Оставить заявку

Павел Соловьев

Руководитель направления ИИС УЦСБ psolovyev@ussc.ru +7 (922) 166 96 82

Константин Жестов

Менеджер по развитию МПС софт zhestovkv@masterscada.ru +7 (985) 620 06 19

