

ПРОМЫШЛЕННЫЕ КОНТРОЛЛЕРЫ КОМПАНИИ «ЭМИКОН»

www.emicon.ru

Компания АО «ЭМИКОН» с 1988 года работает на рынке промышленной автоматизации, специализируясь на разработке и производстве

импортозамещающих

программируемых логических контроллеров, а также проектировании и поставке «под ключ» АСУ ТП на их базе для различных отраслей промышленности.

ВПК

и другие

Основные направления деятельности:

- разработка и производство программируемых логических контроллеров для предприятий всех отраслей промышленности;
- комплексная автоматизация "под ключ" объектов трубопроводного транспорта нефти, нефтепродуктов и газа;
- производство и поставка программно-технических комплексов для систем: автоматического пожаротушения, станционной и линейной телемеханики, учета энергопотребления и т.д.;
- обучение специалистов заказчиков;
- > пожизненное обслуживание поставленных систем автоматизации.

АО "ЭМИКОН" имеет все необходимые лицензии, разрешения и сертификаты надзорных органов России на разработку и изготовление продукции, выполнение проектных работ, исполнений функций ГЕНПОДРЯДЧИКА.

Измерительные системы на базе контроллеров ЭМИКОН, а также модули связи с объектом, входящие в состав ПЛК, зарегистрированы в Государственном реестре средств измерения и допущены к применению в Российской Федерации. АО "ЭМИКОН" зарегистрировано в Реестре Российской системы калибровки.

Промышленные контроллеры разработки и производства АО "ЭМИКОН" позволяют создавать многоуровневые системы автоматизации практически любой сложности и способны решать самые разнообразные задачи во всех отраслях промышленности.

В настоящее время основными сериями модулей, используемых при построении систем автоматизации, являются серии **DCS-2000** и **MKCO**.

Использование той или иной серии зависит от объекта автоматизации, географического расположения датчиков и исполнительных устройств.

Контроллеры серии DCS-2000

DCS-2000 Контроллеры серии предназначены для построения распределенных и централизованных Эта систем автоматизации. серия выпускается В трех различных конструктивных исполнениях (М1, М2, M3) отличается повышенной производительностью и надежностью.

Конструктивные исполнения модулей серии DCS-2000

DCS-2000 (M1)

Предназначены для создания распределенных систем автоматизации

DCS-2000 (M2)

Предназначены для создания распределенных и централизованных систем автоматизации

DCS-2000 (M3)

Предназначены для создания центральных контроллеров

Модули серии DCS-2000 исполнения M1

Контроллеры DCS-2000 (M1) предназначены для создания распределенных систем автоматизации.

Конструкция модулей DCS-2000 исполнения M1 предусматривает установку их на DIN-рельс.

Серия DCS-2000 (M1) включает модули процессорных устройств (ЦПУ), модули связи с объектом (УСО) и модули общего применения.

Модули ЦПУ построены на базе x86-совместимых микропроцессоров и используют среду программирования CoDeSys. Возможна работа модулей ЦПУ в режиме резервирования.

Модули УСО являются интеллектуальными. Позволяют производить первичную обработку входных сигналов, освобождая, тем самым, ЦПУ для выполнения сложных алгоритмов управления.

Информационный обмен между модулями УСО и модулями ЦПУ осуществляется по двум интерфейсным каналам RS-485, протокол MODBUS RTU.

Обеспечивается большая масштабируемость (к одному ЦПУ можно подключить до 64 модулей ввода/вывода), что удобно для модификации систем автоматизации.

Модули УСО являются взрывозащищенными с маркировкой взрывозащиты [Exib]IIC X.

Модули УСО снабжены устройством гальванической изоляции объектовой части от системной.

Модули серии DCS-2000 исполнения M2

Контроллеры DCS-2000 (исполнение M2) предназначены для создания распределенных и централизованных систем автоматизации.

Конструкция модулей серии DCS-2000 исполнения M2 предусматривает установку их в каркас.

Модули объединяются в контроллер с помощью двух интерфейсных каналов RS-485, цепи которых выполнены печатным монтажом на кроссовой плате. Кроме того, кроссовые платы имеют цепи, предназначенные подключения двух независимых источников питания (основного и резервного) и для автоматического задания сетевых адресов в информационной сети RS-485.

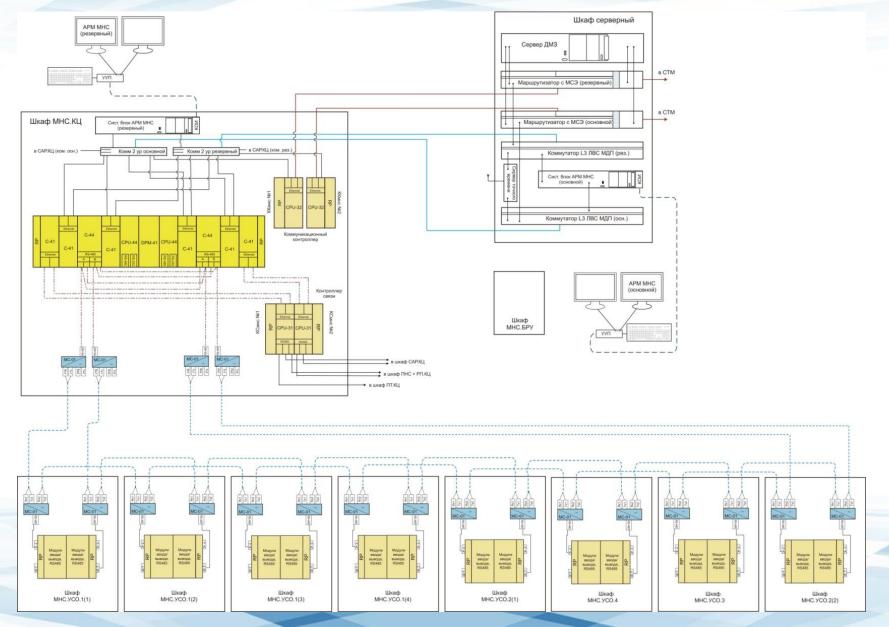
Максимальное количество модулей, устанавливаемых в каркас, - 28. Есть возможность объединения каркасов. Протокол обмена по интерфейсным каналам - MODBUS RTU и EMIBUS.

Особенностью модулей серии DCS-2000 (M2) является использование в них средств диагностики, позволяющее контролировать целостность полевых шин, что повышает надежность систем автоматизации, построенных на базе этих модулей.

Модули серии DCS-2000 исполнения M3

Контроллеры DCS-2000 (M3) предназначены для создания центральных контроллеров.

Конструкция модулей серии DCS-2000 исполнения M3 схожа с модулями исполнения M2. Информационный обмен внутри каркаса производится по параллельной шине.



Серия DCS-2000 (M3) включает модули процессорных устройств (ЦПУ) и сетевые модули.

Центральный контроллер, построенный на базе модулей серии DCS-2000 (М3), является резервируемой системой, состоящей из двух контроллеров.

Каждый контроллер содержит модуль ЦПУ и сетевые модули. Оба контроллера устанавливаются в один каркас, содержащий единую кроссовую плату, разделенную на две части. Каждый контроллер имеет свою шину связи со своими сетевыми модулями и отдельную шину для доступа к модулю двухпортовой памяти DPM-41A, с помощью которого производится информационный обмен между контроллерами (основным и резервным) с целью выравнивания памяти.

Структурная схема системы автоматизации на базе контроллеров серии DCS-2000

Многофункциональные контроллеры связи с объектом (МКСО)

Многофункциональные контроллеры связи с объектом (МКСО) предназначены для работы в качестве устройств связи с объектом (УСО) в распределённых или локальных системах автоматизации, включая объекты с наличием взрывоопасных зон классов 0, 1 и 2.

МКСО представляет собой проектнокомпонуемое изделие и имеет блочномодульную конструкцию.

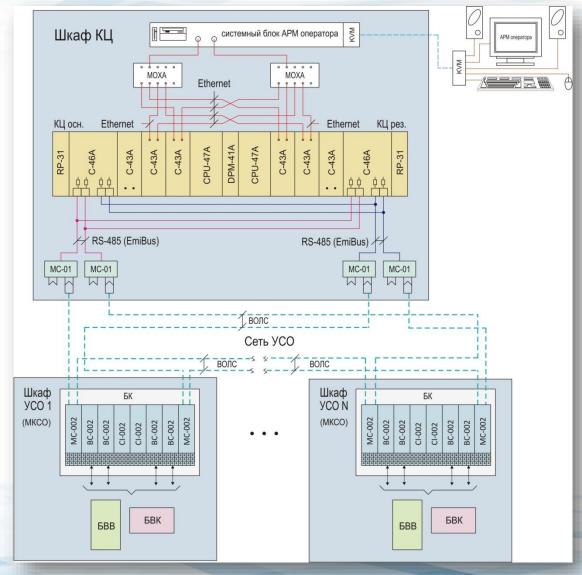
В состав контроллера МКСО входят следующие блоки:

- Блок Коммуникационный (БК)
 (1 блок в одном шкафу УСО)
- Блок Внутришкафного Контроля (БВК)
 (1 блок в одном шкафу УСО)
- Блоки Ввода/Вывода (БВВ)
 (от 1 до 16 блоков в одном шкафу УСО)

Каждый блок содержит крейт и модули (ввода/вывода, сетевые, коммуникационные).

Типы крейтов и модулей, а также их количество определяются проектом.

Контроллер серии МКСО осуществляет ввод/вывод объектовых сигналов СА и работает под управлением центрального процессорного устройства (ЦПУ), установленного в шкафу контроллера центрального (КЦ). Связь МКСО с КЦ осуществляется по информационной сети «Сеть УСО».

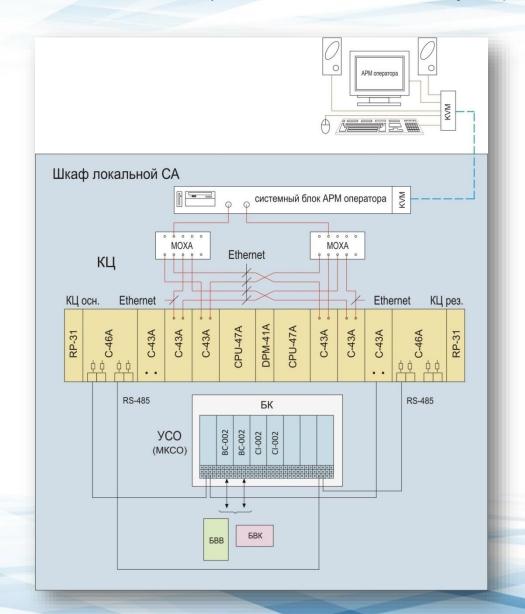

МКСО поддерживает следующие конфигурации Сети УСО:

- ✓ магистраль,
- ✓ кольцо,
- ✓ дублированная магистраль,
- ✓ дублированное кольцо.

Контроллеры серии МКСО могут быть использованы как в распределённых, так и в локальных СА.

Структурная схема распределенной СА на базе МКСО

(топология Сети УСО – дублированное кольцо)

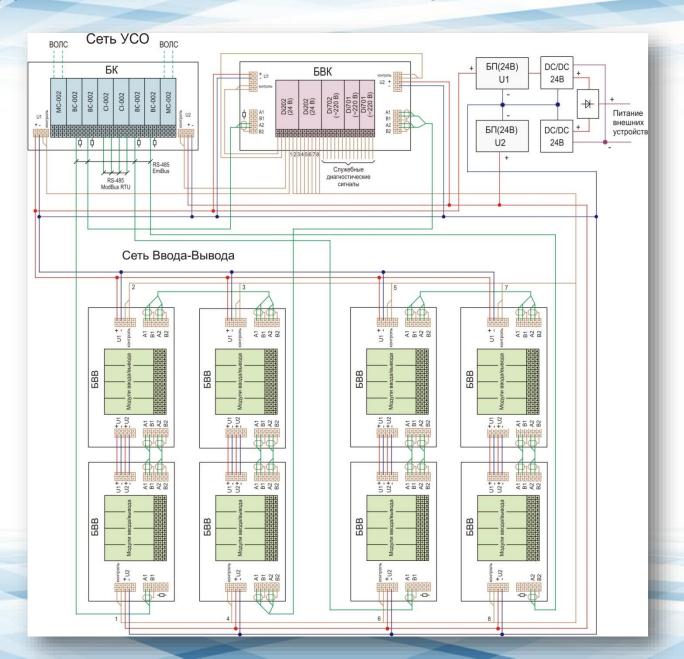

Расстояние между КЦ и удаленными УСО может достигать нескольких километров.

В качестве КЦ используются модули серии DCS-2000 исполнения M3.

В качестве линий связи Сети УСО используется оптоволоконный кабель (одномодовый или многомодовый).

Структурная схема локальной СА на базе МКСО

(топология Сети УСО – дублированная магистраль)

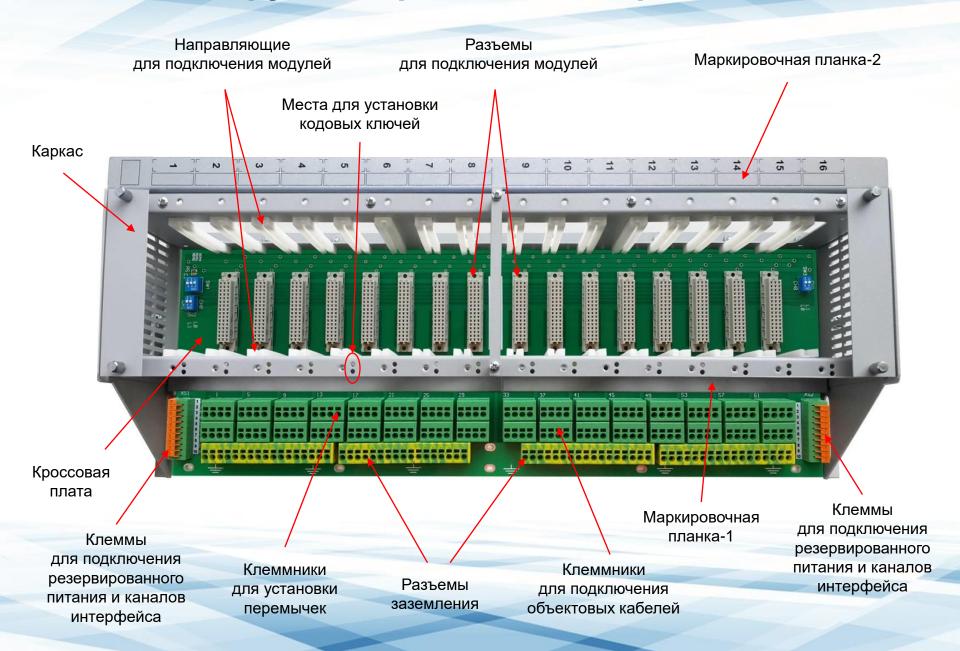


МКСО располагается в одном шкафу с УСО.

В качестве КЦ используются модули серии DCS-2000 исполнения M3.

В качестве линий связи Сети УСО используются экранированные витые пары (интерфейс RS-485).

Структурная схема типового шкафа УСО на базе МКСО


Вид модуля серии МКСО с задней стороны

Объектовые сигналы

Системные сигналы

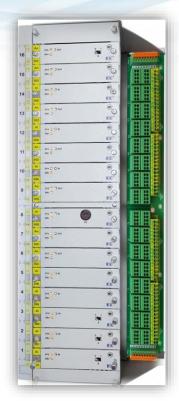
Конструктив крейта БВВ серии МКСО

Функциональность малоканальных модулей ввода/вывода (от 1 до 3-х каналов), входящих в состав БВВ, обеспечивает обработку всех необходимых типов входных сигналов СА (включая искробезопасные) и формирование всех необходимых типов выходных сигналов СА (включая искробезопасные).

При этом обеспечивается требуемый уровень защиты модулей

ввода/вывода от воздействий импульсных перенапряжений.

Полевые кабели, минуя промежуточные клеммники, подключаются непосредственно к клеммам кроссовой платы. Тем самым обеспечивается подключение сигналов от объектовых кабелей системы автоматизации к модулям МКСО.


Все модули ввода/вывода, входящие в состав БВВ, имеют два ввода питания +19...27 В.

Модули имеют по два канала RS-485 (протокол - EmiBus, скорость – 1,8 Мбит/с), подключаемые к модулям BC-002.

Напряжение гальванической изоляции - не менее 4 кВ.

Все модули ввода/вывода имеют встроенные устройства защиты от импульсных перенапряжений.

Блоки ввода/вывода

БВВ

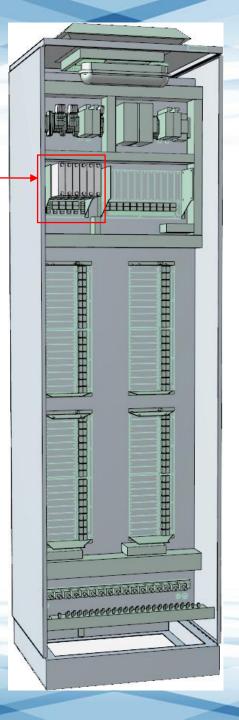
16 платомест для общепромышленных модулей ввода/вывода

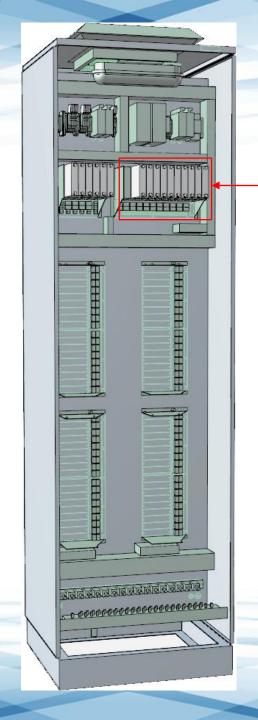
БВВ-02

8 платомест для общепромышленных модулей ввода/вывода, 8 платомест для ИБ модулей ввода/вывода

Блок коммуникационный БК-12

Блок внутришкафного контроля БВК-10

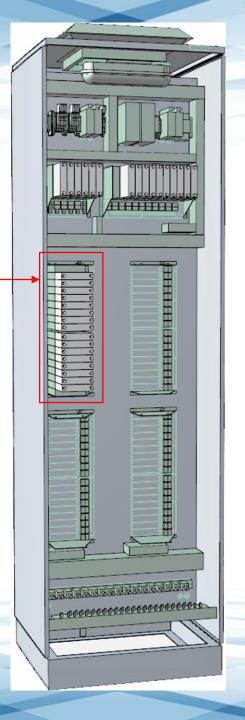

Установка модулей МКСО в типовом шкафу УСО

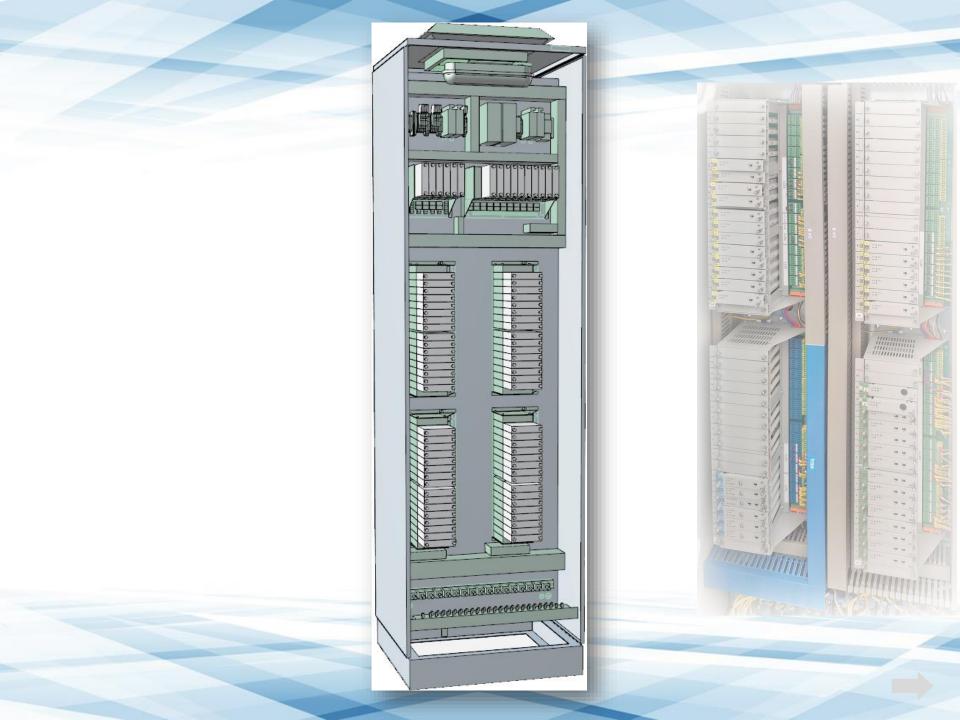


Блок коммуникационный БК —

обеспечивает:

- связь с КЦ по оптоволоконной информационной шине EmiBus (дублированное оптокольцо с "самовосстановлением") в распределенных СА;
- связь с КЦ по информационной шине EmiBus в локальных СА;
- связь с блоками БВВ и БВК по дублированным интерфейсам RS-485 (протокол EmiBus);
- связь с интеллектуальными датчиками и исполнительными механизмами, а также со смежными системами автоматики по интерфейсу RS-485 (протокол ModBus RTU).

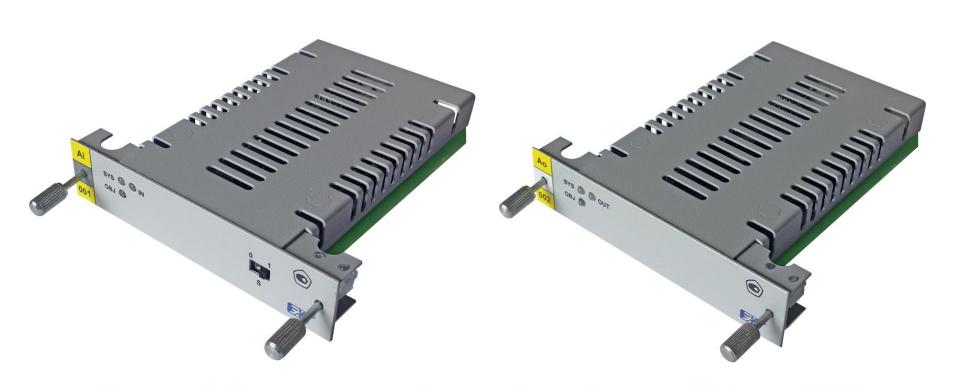



Блок внутришкафного контроля БВК

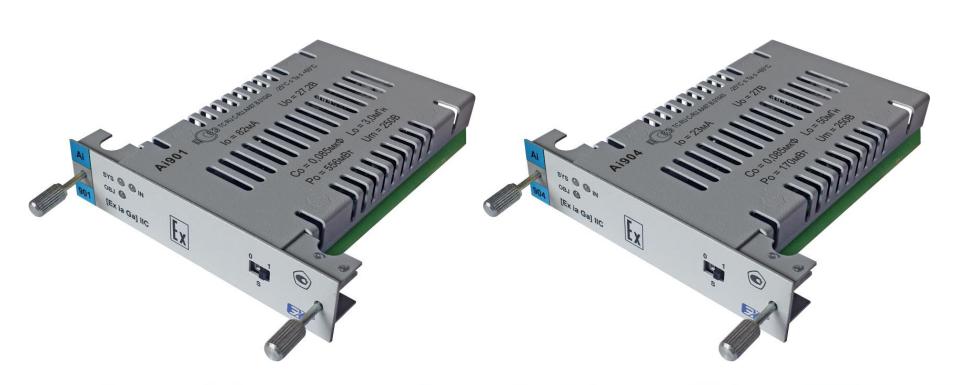
предназначен для контроля внутренних сигналов шкафа УСО (ввод 220 VAC, выходные напряжения блоков питания +24 VDC, температура внутри шкафа, открывание дверей, состояние аккумуляторов и внутренняя диагностика UPS и др.).

Блок ввода/вывода БВВ

предназначен
для приема и обработки
входных аналоговых и
дискретных сигналов
и формирования
выходных аналоговых и
дискретных сигналов



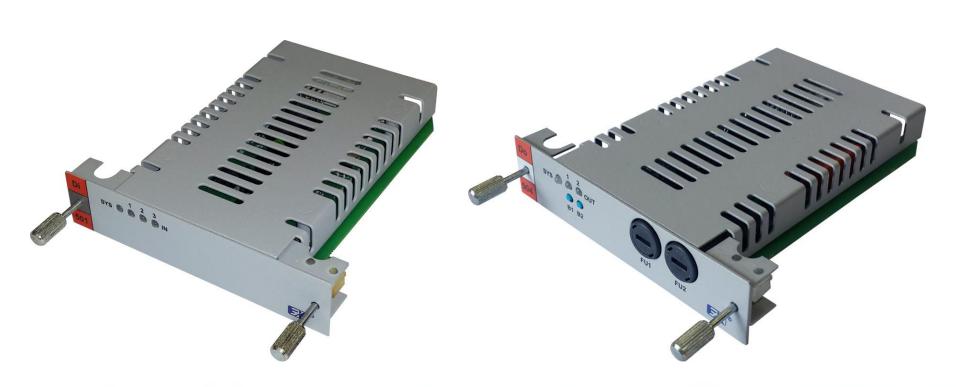
Модули БВВ серии МКСО


Аналоговые модули БВВ

общепромышленного исполнения

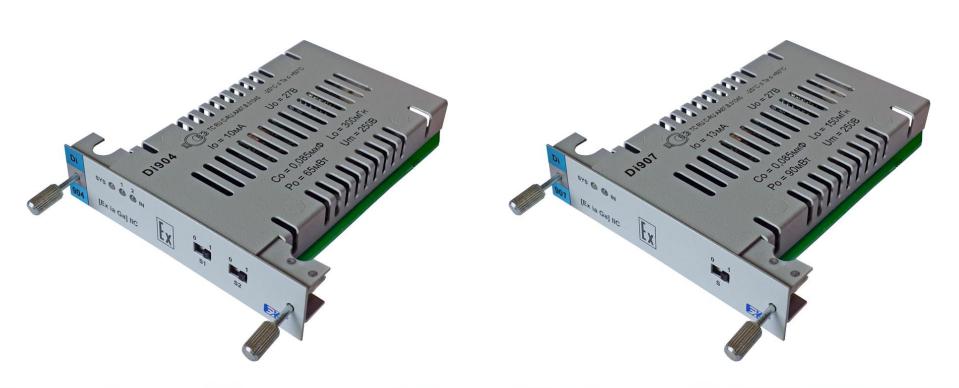
Аналоговые модули БВВ

искробезопасного исполнения


Дискретные модули БВВ

общепромышленного исполнения

Дискретные модули БВВ


общепромышленного исполнения

220 B

Дискретные модули БВВ

искробезопасного исполнения

Модули Блока коммуникационного (БК)

Модуль оптического медиаконвертера *(многомодовый)*

Модуль оптического медиаконвертера *(одномодовый)*

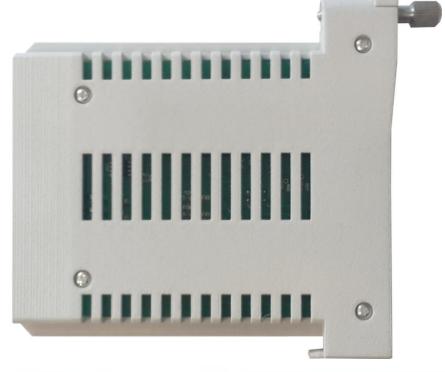
Модуль контроллера сети ввода/вывода

Модуль контроллера интерфейсов

Модули Блока внутришкафного контроля (БВК)

Модули БВК имеют меньшее напряжение гальванической изоляции (1 кВ), большее количество каналов дискретного ввода в одном модуле.

С 2021 года модули серии МКСО начали выпускаться в пластмассовых корпусах, что позволит значительно расширить область применения серии МКСО.


Модули серии МКСО в пластмассовых корпусах предлагается использовать в СА, где высокая степень защиты корпусов контроллеров не является приоритетной.

Конструктив модуля серии МКСО

(в пластмассовом корпусе)

Конструктив модуля серии МКСО

(в пластмассовом корпусе)

Отличительной особенностью модулей ввода/вывода МКСО является полностью законченный функционал входного или выходного тракта.

Модули ввода/вывода допускают "горячую" замену и функционируют в режиме "plug and play", т.е. при установке их в соответствующее место БВВ они автоматически распознаются модулем ВС-002, и информация от модулей ввода/вывода начинает поступать в КЦ.

Для защиты от некорректной установки модулей ввода/вывода в каркас БВВ используются специальные кодовые ключи, закрепленные на модулях, которые не позволяют произвести установку модуля, не соответствующего спецификации.

Преимущества применения контроллеров МКСО

- ▶Сокращается (в разы) время на разработку и изготовление шкафов.
- ▶Сокращается время на поиск и устранение возможных неисправностей в ходе пуско-наладки и в процессе эксплуатации.
- ➤Аппаратная избыточность в контроллере минимальна. При конструировании шкафа УСО нет необходимости закладывать "резервные" сигналы и клеммники.
- ➤Количество объектовых сигналов, подводимых к шкафу УСО выше, чем при использовании традиционных конструктивных и схемотехнических решений.

Количество АСУ ТП, внедренных на предприятиях системы ПАО «Транснефть»

	Системы автоматизации (CA)	Системы автоматического пожаротушения (САП)	Системы автоматического регулирования давления (САРД)	Системы линейной телемеханики (СТМ)
АО «Черномортранснефть»	29	23	18	29
АО «Транснефть - Дружба»	32	19	21 .	72
АО «Транснефть - Сибирь»	17	23	- 17	
АО «Транснефть - Север»	9	8	5	
АО «Транснефть - Урал»	11	13		-
АО «Транснефть - Приволга»	5	16	3	-
ООО «Транснефть - Балтика»	3	3	1	-
ООО «Транснефть - Порт Приморск»	7	1		4:
АО «Транснефть - Верхняя Волга»	4	-6	-	
АО «Транснефть - Прикамье»	2	2	1	
АО «Транснефть – Западная Сибирь»	1			
АО «Транснефть - Диаскан»	2	-	-	7-
Итого:	122	114	49	101

АСУ ТП, внедренные в разных отраслях промышленности

UE ATGUAG EDOMI HUEFUHOOTI				
НЕФТЯНАЯ ПРОМЫШЛЕННОСТЬ				
ООО "Афипский НПЗ", Краснодарский край, Северский р-он, пос. Афипский	СА и САП приемо-сдаточного пункта "Афипского НПЗ"			
ОАО "Сургутский завод стабилизации конденсата", Тюменская обл., г. Сургут	СА и САП эстакады налива темных нефтепродуктов (стабильного конденсата) н "Сургутском ЗСК" (ТС-1 и МТБС)			
ГК "ТРАССА", г. Электроугли	СА слива и перекачки топлива и контроля за аварийными ситуациями на нефтебазе			
ОАО "Татнефть", г. Альметьевск	СА подпорной насосной станции на территории ОАО "ТАНЕКО"			
	САП сливо-наливной ж/д эстакады № 2 со сливной насосной № 3			
ООО "РН-Туапсенефтепродукт", г. Туапсе	САП резервуарного парка (РВС-5000 №№ 42-47)			
	САП резервуарного парка (1 и 2 очереди)			
ЗАО "Рязанская нефтеперерабатывающая компания", г. Рязань	САП резервуарного парка "Рязанского НПЗ"			
ОАО "ЛукОйл", г. Пермь	САП промежуточной перекачивающей станции "Андреевка"			
ОАО "ТатНИИНефтемаш", Республика Татарстан, г. Казань	Система управления установкой парогенераторной передвижной УПМН-1,6/10			
ТЯЖЕЛОЕ МАШИНОСТРОЕНИЕ				
ОАО "Уралмашзавод", г. Екатеринбург	Система автоматического управления (САУ) карьерным экскаватором			
ЭНЕРГЕТИКА				
ЗАО "Аверс-Оскол«, Белгородская обл., г. Старый Оскол	Система контроля и учета электроэнергии (АСКУЭ)			
КОММУНАЛЬНОЕ ХОЗЯЙСТВО				
МП "Тепловые сети", Белгородская обл., г. Старый Оскол	Система управления оборудованием городских теплосетей			
ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ				
ОАО "Раевский сахарный завод", Башкирия, Альшеевский район, пос. Раевский	САУ энергоустановкой ПВМ-2000-АГ			
ДРУГИЕ ОТРАСЛИ				
ОАО "Старьстекло", Брянская обл., пос. Старь	АСУ разливкой стекла			
ОАО "Гомельстекло", Беларусь, г. Гомель	АСУ механизмом отрезки листового стекла			
ОАО "Гермес-Москва", г. Москва	Система охранной сигнализации АЗС			

Спасибо за внимание!

Контактная информация:

🛇 107207, г. Москва, Щелковское шоссе, 77

\(\omega\) +7 (499) 707-16-45